
REPORT DOCUMENTATION PAGE
Form Aporoved

OM3 No. G7Q4-0I33

n:? •<:" -

1. AGENCY USE ONLY (Leave blank) j 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FINAL/01 FEB.93 TO 28 FEB 95

4. TITLE AND SUBTITLE

TOWARDS" ANORMAL ISM FOR PROGRAM GENERATION 1995
c ci iMp.n.i/r; »JüVB: rz \i i] *,'o c D c

5 AUTHOR'S)

DANIEL E. COOKE

2304/FS
F49620-93-1-0152

7. PERFORMING ORGANIZATION NA.ME^S1- ANO AOORESSi'ES1

DEPARTMENT OF COMPUTER SCTENCE
UNIVERSITY OF TEXAS EL PASO
EL PASO, TEXAS 79968-0518 AF0SR-

3. PERFORMING ORGANIZATION
REPORT NUM3ER

H.Q5-0416

9. SPONSORING MONITORING AGENCY NAME'S) AND ADDRESS(ES)

AFOSR/NM
110 DUNCAN AVE, SUTE B115
BOLLING AFB DC 20332-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMSE.R

F49620-93-1-0152

i

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

BagL is a formal, general purpose language which provides for database,
event-driven, and scientific computing in a uniform level of representation. In
BagL a problem solver is not required to provide the algorithmic detail in a
problem solution. Instead the problem solver describes the solution directly by
specifying, via a metastructure, the data structures which will hold results useful
in solving the problem. A metastructure is a very general abstraction configurable
into any imaginable data structure, where a data structure is viewed as a database;
a CRT screen or report layout; or a classical data structure such as a stack, a
queue, ect. BagL provides a platform to specify the contents and the form of a
data structure. BagL is an imparovement over current programming paradigms in that
it provides for a natural platform to exploit data flow parallelisms and because it
eliminates much.of the technical complexity of problem solving including: decisions
about data structures; decisions about how control structures are to interact with
data structures; decisions about how one converts an external structure to an
internal structure and vice versa; input-output decisions, in general; decisions
about aprallelisms; decisions about control structures in general. BagL is a small
aaagaiageTE^iise., there are tew language constructs; ana it is not laomatioBoeperxaeBJ.

DTXC QüiJuiil'i iA\iDx"Ii;ü'i'iii.ü 3 16. PRICE CODE

I
17. SECURITY CLASSIFICATION

OF REPORT
UNCLASSIFIED

SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF A3STRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT j

SAR(SAME AS REPORT)]

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89!
Prescribed bv JN5i Sta Z39-!B
2'38-T02

TOWARDS A FORMALISM
FOR PROGRAM GENERATION
19 9 5 - FINAL REPORT

Prepared by
Daniel E. Cooke

Department of Computer Science
University of Texas El Paso
El Paso, Texas 79968-0518

April 1995

Contract F49620-93-1-0152

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By _
Distribution/

Availability Codes

Dist

rH

Avai! and/or
Special

Prepared for

AFOSR
Air Force Office of Scientific Research
Mathematical and Information Sciences
Air Force Office of Scientific Research
Boiling Air Force Base
Washington, D.C. 20332 6448

19950614 063

TOWARDS A FORMALISM
FOR PROGRAM GENERATION
1995

Prepared by
Daniel E. Cooke

Department of Computer Science
University of Texas El Paso
El Paso, Texas 79968-0518

April 1995

Contract F49620-93-1-0152

Prepared for

AFOSR
Air Force Office of Scientific Research
Mathematical and Information Sciences
Air Force Office of Scientific Research
Boiling Air Force Base
Washington, D.C. 20332 6448

NOTICES
This final report is a presentation of the findings from research funded under F49620-93-1-
0152.

it

11

ABSTRACT
BagL is a formal, general purpose language which provides for database, event-driven, and

scientific computing in a uniform level of representation. In BagL a problem solver is not required to
provide the algorithmic detail in a problem solution. Instead the problem solver describes the solution
directly by specifying, via a metastructure, the data structures which will hold results useful in solving
the problem. A metastructure is a very general abstraction configurable into any imaginable data
structure, where a data structure is viewed as a database; a CRT screen or report layout; or a classical
data structure such as a stack, a queue, etc. BagL provides a platform to specify the contents and the
form of a data structure.

BagL is an improvement over current programming paradigms in that it provides for a natural
platform to exploit data flow parallelisms and because it eliminates much of the technical complexity of
problem solving including: decisions about data structures; decisions about how control structures
are to interact with data structures; decisions about how one converts an external structure to an internal
structure and vice versa; input-output decisions, in general; decisions about parallelisms; decisions
about control structures in general. BagL is a small language (i.e., there are few language constructs)
and it is not domain dependent.

*.
\

TABLE OF CONTENTS

in

NOTICES i
ABSTRACT ü
TABLE OF CONTENTS iii
FOREWORD iv
PREFACE AND ACKNOWLEDGEMENTS v
OBJECTIVES 1
STATUS 1
PUBLICATIONS 3
PERSONNEL 4
INTERACTIONS 4
INTELLECTUAL PROPERTY ISSUES 7
ADDITIONAL STATEMENTS 7
APPENDDCA Al
APPENDDCB Bl
APPENDIX C Cl
APPENDIX D Dl
APPENDIXE El
APPENDIX F Fl

> *

IV

FOREWORD
This is the final report associated with AFOSR contract, F49620-93-1-0152.

PREFACE AND ACKNOWLEDGEMENTS
Research sponsored by the Air Force Office of Scientific Research (AFSC), under

contract F49620-93-1-0152. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

OBJECTIVES.
In proposing the research effort which serves as the subject of this report, we set out to

complete or make substantial progress toward each of the following research objectives:

(1). Complete a BagL interpreter based upon the current syntax and semantics;

(2). Enhance the semantics of BagL to abstract out quantifier information;

(3). Show expressiveness (via LISP approach);

(4). Extend the semantics of BagL to provide facilities for realtime specification and

concurrency;

(5). Establish a logical semantic for BagL to provide for the statement of constraints;

(6). Provide automatic facilities to help maintain BagL software by employing results

from the study of nonmonotonic logic; and

(7). Develop a prototype BagL environment including a visual interface.

In the next section, the status of each of these efforts is discussed.

STATUS.
In the following subsections each of the research objectives of the referenced contract

is discussed.

(1). Complete a BagL interpreter based upon the current syntax and semantics

The first version of a BagL interpreter was completed in the summer of 1993 and

reported in the 1993 yearly report [C94].

(2). Enhance the semantics of BagL to abstract out quantifier information

The BagL semantics were completed in the spring of 1993 and reported in the 1993

yearly report [C94]. These semantics abstracted out the quantifier information which was

necessary in earlier versions of BagL.

(3). Show expressiveness
In March, 1995 we completed a proof that BagL is equivalent to the Universal Turing

Machine. The basic parts of this proof are given in Appendix A.

(4). Extend the semantics of BagL to provide facilities for realtime

specification and concurrency

The semantic extensions for BagL's concurrent and event driven capabilities exist in the

semantics reported in the 1993 yearly report [C94]. The concurrent characteristics of BagL are

given in Appendix B of this report.

(5). Establish a logical semantic for BagL to provide for the statement of

constraints

A further extension to BagL, to impose integrity constraints, is accomplished and

discussed in detail in the Ph.D. thesis of Ann Quiroz Gates [G94]. An overview of these

concepts is given in Appendix C.

(6). Provide automatic facilities to help maintain BagL software by employing

results from the study of nonmonotonic logic

The reliability of a program is subject to environmental influences. Programs do not

operate in a vacuum. They are expected to fit into some environment and operate reliably in

that environment. Unfortunately, environments change and specifications which were true in

the original environment may not be true in future environments. When the truth of a

specification changes as a result of an environment, the corresponding program must evolve to

conform to the new environment. Evolution, therefore, is achieved through adaptive

maintenance.

Environmental changes are indicated when a system is presented information which is

inconsistent with the program's knowledge. A program cannot respond correctly when

environmental information contradicts specified information.

In [LC95] it is shown that many environmental changes result in an inconsistency in the

software system's specification. Using the integrity constraints discussed in Appendix C, the

shifts in knowledge which result in inconsistencies are easily detected in constraint functions

which operate on a DB and its successor, DB' (e.g., when some information is true in DB and

false in DB'). Detecting inconsistencies permits the system itself to alert programmers of the

need for adaptive maintenance. Thus, through its features for integrity constraints, it is

possible that BagL may provide additional support for maintenance and, as a result, further

improve upon the reliability of systems developed in BagL.

(7). Develop a prototype BagL environment including a visual interface

A Visual Interface and prototype environment are discussed in detail in the Master's

Thesis of Aida Gandara [AG94]. An overview of this effort is given in Appendix D.

PUBLICATIONS.
Further evidence of the success of our theoretical work can be observed in our recent

publications. The following is a list of journal papers (appearing or accepted to appear during

the project period) based on the AFOSR project at UTEP.

C.V. Ramamoorthy Daniel E. Cooke, and Chitta Baral, "Maintaining the
Truth of Specifications in Evolutionary Software," International Journal
of AIT, Vol. 2, No. 1 (1993) pp. 15-31.

Daniel E. Cooke, "Possible Effects of the Next Generation Programming
Language on the Software Process Model," International Journal on
Software Engineering and Knowledge Engineering, Vol 3 No 3,
(September, 1993) pp. 383-399.

Daniel E. Cooke, "An Introduction to the Issues of Computer Aided Software
Engineering," in The Impact of CASE Technology on Software
Processes, World Scientific Publishing, Singapore (1994) pp 1-12.

Daniel Cooke, Richard Duran, Ann Gates, and Vladik Kreinovich,
"Geombinatoric Problems of Environmentally Safe Manufacturing and
Linear Logic," Vol. 4 No. 2 (October, 1994), Geombinatorics, pp. 36-
47.

Daniel Cooke, Elif Demirörs, Onur Demirörs, Ann Gates, Bernd Krämer,
Murat M. Tanik, "Languages for the Specification of Software," to
appear in Journal of Systems and Software.

Daniel Cooke, "An Informal Introduction to a High Level Language with
Application to Interval Mathematics," to appear in Interval
Computations.

Luqi and Daniel E. Cooke, "Rapid Prototyping and a Model for Software
Maintenance," to appear in International Journal on Software
Engineering and Knowledge Engineering.

During the contract period, the following conference papers were accepted and/or

published and presented:

Daniel E. Cooke, "Arithmetic Over Multisets Leading to a High Level
Language," PD-Vol. 49, Computer Applications and Design
Abstraction, ASME 1993, Houston, Texas (January, 1993) pp. 31-36.

Daniel E. Cooke, "A High Level Programming Language Based Upon Ordered
Multisets," Proceedings of IEEE Fifth International Conference on
Software Engineering and Knowledge Engineering, San Francisco,
(June, 1993) pp. 117-124.

Daniel Cooke and Luqi, "Formal Support for Software Maintenance," IEEE
COMPSAC '93, Phoenix, AZ, (November, 1993) pp. 402-407.

Daniel E. Cooke, "A High Level Language For Engineering Applications,"
PD-Vol. 59, Software Systems Engineering, ASME 1994, New
Orleans, Louisiana (January, 1994) pp. 323-329.

Daniel E. Cooke, Büchard Duran, Ann Gates, and Vladik Keinovich, "Bag
Languages, Concurrency, Horn Logic, and Linear Logic," in
Proceedings of IEEE Sixth International Conference on Software
Engineering and Knowledge Engineering, Riga, Latvia, (June, 1994)
pp. 289-297.

Daniel E. Cooke, "A Formal Model of Problem Solving and its Impact on
Software Development," 1994 Monterey Workshop on Formal
Methods Proceedings, Monterey, CA, (September, 1994), pp. 63-67.

Daniel E. Cooke, "Preliminary Thoughts Concerning the Interphase Activity of
Requirement Migration," to appear in Proceedings of IEEE Seventh
International Conference on Software Engineering and Knowledge
Engineering.

Ann Q. Gates and Daniel E. Cooke, "The Use of Integrity Constraints in
Software Engineering" to appear in Proceedings of IEEE Seventh
International Conference on Software Engineering and Knowledge
Engineering.

PERSONNEL.
The AFOSR research effort at the University of Texas at El Paso (UTEP) is staffed by

three people. Dr. Daniel Cooke receives three month's salary each year as project director and

principal researcher. Ms. Ann Gates and Mr. Richard Duran both received their twelve month

salaries from the project.

Mr. Duran is completing a Master of Science in Computer Science in 1995 and Dr.

Gates completed her Ph.D. in Computer Science at New Mexico State University in December,

1994. The research component of their respective degrees is based on the research they

conducted for the project.

In August, 1993 Bassam Chokr (Previously funded by the AFOSR contract) received a

Master of Science Degree in Computer Science. His thesis is entitled, A Data Structure for

BagL.

INTERACTIONS.
During the contract period we have had close interactions with a number of people. All

of these interactions have had a technical focus on the AFOSR funded research:

Alfs Berztiss, University of Pittsburgh

Jacob Schwartz, Courant Institute, NYU

Valdis Berzins, Naval Postgraduate School

Luqi, Naval Postgraduate School

C.V. Ramamoorthy, U.C. Berkeley

Murat Tanik, Southern Methodist University

S.K. Chang, University of Pittsburgh

Evidence of further professional interactions Cooke had during the contract period,

follows.

Editorships:
Associate Editor of the Journal for Software Engineering and Knowledge Engineering.
Book Review Editor of the Journal for Software Engineering and Knowledge

Engineering.
Co-editor COMPUTER APPLICATIONS AND DESIGN ABSTRACTION 1992 -

ASME.
Editor COMPUTER APPLICATIONS AND DESIGN ABSTRACTION 1993 -

ASME.
Proceedings Editor COMPSAC1993.
Editor SOFTWARE SYSTEMS IN ENGINEERING 1994 - ASME.
Editor SOFTWARE SYSTEMS IN ENGINEERING 1995- ASME.
Proceedings Editor IEEE ISADS 1995.

Program Committees (member):
Sixth International Conference on Software Engineering and Knowledge Engineering

(S.K. Chang, Conference Chair).
Seventh International Conference on Software Engineering and Knowledge

Engineering (S.K. Chang, Conference Chair).
Third IEEE Systems Integration Conference (Raymond Yeh and Peter Ng,

Conference Co-Chair).
IEEE CAIA '93 (Peter Selfridge Conference Chair).
IEEE COMPSAC '93 (Joe Urban Chair).
IEEE COMPSAC '94 (C.V. Ramamoorthy Chair).
IEEE ISADS '95 (Joe Urban Chair).

Program Committees (officer):
Symposium Chair ASME Computer Applications and Design Abstraction '93.
Symposium Chair ASME Computer Applications and Design Abstraction '94.
Chair ASME Computer Applications and Design Abstraction '95.
Chair ASME Computer Applications and Design Abstraction '96.
Chair of Workshop on Software Automation for Systems Integration Conference,

1992.
Chair of Workshop on Software Automation for International Conference on Software

Engineering and Knowledge Engineering, 1993.
Chair of Workshop on Software Automation for International Conference on Software

Engineering and Knowledge Engineering, 1994.

.,

Demonstration Chair, SEKE '95.

Consulting and Technology Transfer:
During the contract period a number of promising application areas of BagL have been

identified, including the Database area, C3I simulations, processing satellite telemetry data, etc.

Below, these areas are discussed. Industrial interest in BagL has come from two companies,

Knowledge Based Systems, Inc. and Research Analysis and Maintenance, Inc.

1. Multilevel Secure Databases.

Mr. Jim Reed of the Data Analysis Center in Alexandria, Virginia (703 960-1000) is

interested in BagL for the purpose of developing and modeling multilevel secure databases.

2. C3I Battlefield Management Specification and Prototyping

It is believe that BagL possesses the features necessary to become an excellent tool for

specifying and modeling C3I systems. Mr. Sam Dinitto, Division Chief at RADC (315 330-

3011) supports the claim that BagL holds promise as a language for the specification of

Battlefield Management Software. In particular, Mr Dinitto claims that BagL is applicable to

the specification of C3I Systems in the Systems Definition Technology Division of Rome

Labs.

3. Rapid Prototyping and Automatic Programming of Naval Applications.

Mr. William McCoy (703 663-8367) of the Naval Surface Warfare Center is interested

in BagL for the prototyping and specification of Naval Warfare systems such as the AEGIS

System. Ultimately a BagL compiler is to be developed which will compile BagL

specifications to "C" or Ada programs. The NSWC is also interested in a prototyping tool that

is capable of automatically producing programs. Since BagL is a complete, executable

language, it is possible to build such an automatic program generator.

Professor Alfs Berztiss (412 624-8401) of the University of Pittsburgh believes that

BagL is an excellent language for specification.

4. Rapid Development of Programs to Process Satellite Telemetry Data.

Officials of NASA Ames research center have recently begun the development of a new

satellite called MEDSAT. This satellite is to be used to track the spread of disease carried by

insect populations. BagL is proposed to be the language used for processing the resulting

telemetry data. The BagL research project receives some modest funding from NASA Ames.

5. Education of Computer Science Students.

Valdis Berzins, currently a professor at the Naval Postgraduate School (408 656-

2461), has had a long career in language development. This career spans across the

institutions MIT, University of Minnesota, and the Naval Postgraduate School. Professor

Berzins recently learned BagL and claims that all Computer Science students should learn this

language. He supports his comments by stating that BagL abstracts out everything

unnecessary in problem solution; that its computational model is as simple as it can possibly be;

there is nothing there that does not have to be there. Furthermore, it can serve as a tool to

introduce database and concurrency concepts.

INTELLECTUAL PROPERTY ISSUES.
No applications for patents or copyrights have been made.

ADDITIONAL STATEMENTS.
Additional goals which exceed the objectives of the research effort include the

development of a second prototype interpreter for BagL in 1994, the initial steps to develop a

proof system for BagL programs, and the identification of constructs for processing nonscalar

structures. Appendices E and F summarize the two latter results.

Al

APPENDIX A - BAGL EXPRESSIVENESS

Foundation
The foundation of this work rests upon the concepts of the Turing machine and

Church's Thesis. Alan Turing's conceptual automata is able to perform any computation
known to man. Attempts to improve it through modification have not increased its
performance and it remains the best definition of an algorithm that we have today. Alonzo
Church's thesis that no computational procedure will be considered an algorithm unless it
can be presented as a Turing machine has never been refuted. Every other computational
procedure developed has been shown equivalent to a Turing machine. The combination of
these two concepts provides us with a basis for universality, the ability to represent any
algorithm. The ability to simulate any arbitrary Turing machine in the BagL programming
language demonstrates that any algorithm can also be represented in BagL, thus
establishing the universality of BagL

The BagL Turing Machine
We began by describing and defining the concept of a Turing machine as a

mathematical definition of an algorithm. It followed that any algorithm can be represented
by a Turing machine. After defining Turing machine configurations and computations, we
illustrated three computational examples. We then provided all the pieces necessary to
simulate any arbitrary Turing machine from functions and data structures in the BagL
programming language. The ordered bag data structure simulated the Turing machine tape
and head. BagL built-in functions provided the "move right," "move left" and "replace"
functions for the Turing machine's finite control. Refining these three functions to prevent
"hanging" and alleviate minor problems with bag markers gave us three functions that serve
as the BagL Turing machine's finite control under any conditions.

We next created complex BagL functions to simulate the individual computational
steps on a given Turing machine. We thus described how to simulate all components of
any Turing machine in BagL, thereby enabling us to simulate any arbitrary Turing machine
in BagL. We concluded by illustrating the same three examples computed earlier on a
Turing machine, this time using the BagL Turing machine. The results were identical, both
in number of computational steps and in configurations. The definitions and examples
indicate that, using eventive constructs, BagL can replicate any arbitrary Turing machine
without the use of recursion.

Bl

APPENDIX B EVENTIVE CONSTRUCT
The body of a BagL function is based upon Djikstra's guarded commands [D75].

A BagL program consists of a set of BagL functions which are applied to a BagL

Universe, U. The Universe is where the user may pair BagL variable names with

bags of values via a text editor.

Like Linda [G85] when a BagL program executes it modifies the Universe to

which it is applied. If each variable appearing in a function's Domain is paired with a bag

in U (and if relations are present in the Domain, each relation evaluates to true with respect

to U), the function is enabled for execution and is termed an outer function. Obviously,

several functions may be thus enabled. These functions may execute concurrently. When

an outer function executes, it consumes all variables in its domain.

When an outer function completes execution, the result(s) of the function is(are)

paired with the function's range variable(s) and added (or produced) in the Universe. It

is via the Universe that a user provides inputs and obtains outputs. There are no explicit

constructs for I/O in BagL . BagL inner functions are invoked by some function that is

already executing. A BagL inner function/ receives its input bags from the invoking

function g and returns its result (always a bag) to g.

The interaction between a BagL function and its Universe in terms of production

and consumption provides for the eventive processing of a nonscalar structure.

In eventive processing, one processes a nonscalar structure whose elements are not

available all at once. The arrival of an element is an event to which a function must

respond.1

Example of the Execution of a BagL Program.

Consider the following set of functions to compute the average deviation of a set of

numbers. Assume an initial Universe:

U = {<x,[[33],[88],[66],[44]]>}

and a BagL program:

[J={ ave(Domain(x),Range(x,ave)) = [x, /([+([x]),size([x])])]

dev(Domain(x, ave), Range(x, ave, dev)) =

1 We are currently investigating the use of a fairness operator [D89] to address the
nondeterminancy in the event-driven semantic of SequenceL, wherein two consuming outer
functions have a non-null intersection of domain/range variables.

B2

[x, ave, /([+([abs([-([x,ave])])]),size([x])])]}

The only function eligible for execution is ave. When it begins execution it

consumes its domain so that U={}. A trace of the execution of ave follows. In each line,

the term to be evaluated next is underlined. The nature of the evaluation appears as an

annotation in the intervening lines.

[x, /([+([x]),size([x])])]

Instantiate x based upon U

[[[33],[88],[66],[44]], /([+([[331.[881.[661.[4411).size(f[331.[881.[661.[4411)]) / »

Evaluate the addition operation

[[[33],[88],[66],[44]], /([[2311.size([!331.[881.[661.[4411)l) 1

Evaluate the size operation

[[[33],[88],[66],[44]], /(f[2311.[411) 1

Evaluate the division operation

[[[33],[88],[66],[44]], [57.75]]

The completion of this outer function results in the Universe:

U = {<x,[[33],[88],[66],[44]]>, <ave,[57.75]>]

Now, function dev is eligible for execution. An annotated trace of its execution follows:

/ x, ave, /([+([abs([-([xJave])])]),size([x])])]

Instantiate x based upon U

[[[33],[88],[66],[44]], [57.75], /([+([abs([-([[[331.f881.[66U4411J57.7511)l)n.

size([[331.[881.f661.[4411)l) 1

Evaluate the subtraction, abs, and size operations

/ [[33],[88],[66],[44]], [57.75], /([+([[24.751.[30.251.[8.251. fl3.751DJ411)] »

Evaluate the addition operation

/ [[33],[88],[66],[44]], [57.75], /([[771J41D]

Evaluate the division operation

[[[33],[88],[66],[44]], [57.75], [19.25]]

The completion of this outer function results in the Universe:

B3

U = [<x,[[33],[88],[66],[44]]>, <ave,[57.75]>, <dev,<19.25]>}

Notice that the result of ave is required for the execution of dev. Furthermore, notice that

dev could invoke ave to obtain the value needed, making ave an inner function:

n= { ave(Domain(x),Range()) = [/([+([x]),size([x])])]

dev(Domain(x), Range(x,ave, dev)) =

[x, /([+([abs([-([x,ave([x])])])]),size([x])J)]}

which is evaluated according to the following annotated trace:

I x, /([+([abs([-([x,ave([x])])])]),size([x])])]}

Instantiate x based upon U

[[[33],[88],[66],[44]J, /([+([abs([-([[[33],[88],[66],[44]],

ave([[33U88ir66U44mi)l)l).size([[33U88U66U4411)l)]

Evaluate the ave user-defined function

[[[33],[88],[66],[44]], /([+([abs([-(f[[33lf88U661J44Jl

l57.75]])])]),size(U33U88U66U44]})))]

Evaluate the subtraction, abs, and size operations

[[[33],[88],[66],[44]], /(r+fff24.75U30.25U8.25W3.7511U4W J

Evaluate the addition operation

[[[33],[88],[66],[44]], /(f[77lf4]])]

Evaluate the division operation

[[[33],[88],[66],[44]], [19.25]]

In all previous examples, the eventive construct is employed on all elements of the

domain structure. It is also possible to selectively execute an outer function on some of the

elements, rather than on all. In these cases, one employs a condition on the domain

variables:

cool(Domain(>(temp, thermostat), =([ac_on, [false]])),Range(ac_on,temp,thermostat)) =

[[true], temp, thermostat]

steady(Domain(<-(temp,thermostat),=([ac_on,[true]])),Range(ac_on,temp,thermostat))

[[false],temp,thermostat]

B4

In this example, not only must values exist for domain variables temp and thermostat,

the domain conditions on these variables must be satisfied. Notice that current temp and

thermostat values are reset since they appear as Range variables.

Based upon the BagL data dependency execution strategy, it is clear that

many functions may be eligible for execution at any given time. Important characteristics

of the concurrent behavior of BagL outer functions can be ascertained by the

Domain/Range sets of variables given in the function definitions. BagL supports different

modes of operation. The actual mode is dependent upon whether domain and/or range

variables are shared among outer functions. Assume that f(DOM) and f(RAN) are the

complete sets of variables referenced in f's domain and range definitions, respectively.

Assuming that both // and fj are outer functions, the following definitions follow

logically:

Def 1. Competing Functions. Functions /i and fj are competing iff

fi(DOM) n fj(DOM) * 0 .

Def 2. Interfering Functions. Functions /i and fj are interfering iff

fi(RAN) n fj(RAN) * 0 .

Def 3. Cooperating Functions. Functions /i and fj are cooperating iff

fi atidfj are not Competing or Interfering and

fi(DOM) n fj(RAN) * 0 v fj(DOM) n fi(RAN) * 0 .

Def 4. Autonomous Functions. Functions /i and fj are autonomous iff

they are not competing, cooperating, or interfering.

Outer functions that satisfy either definition, 1 or 2 (i.e., Competing or interfering

functions), result in concurrent, nondeterministic behavior. Functions that satisfy only the

Cooperating functions definition are sequential, and those satisfying definition 4 result in

concurrent, deterministic behavior.

Cl

APPENDIX C INTEGRITY CONSTRAINTS IN BAGL
BagL IS extended to impose database integrity constraints through the use of the

eventive construct of BagL which is defined in Appendix B. The extension does not add

to the knowledge required of the BagL programmer. Functions which impose integrity

constraints behave in a manner consistent with the behavior of BagL functions which

compute results. Consider a simple example. Assume a database exists, like that presented

in figure C.l, view 1.

A BagL function to compute a ten percent raise for all employees, as applied to the

Employee Database, would be:

Function Raise(Dom(Salary), Ran(Salary)) is [Salary * 1.1]

One type of BagL function, called an outer function, is initiated for execution based

upon the availability of data in the database. In particular, the domain variables of the

function (e.g., Dom(Salary)) must be paired with values in the database to which the

function is applied. (The data dependent execution strategy provides the BagL eventive

construct.) When the function begins execution, the domain variables are consumed from

the database. Assuming Raise is an outer function, the initiation of its execution results in

the change to the database as it is depicted in view 2 of figure C. 1.

View 1

Employee
Database

Name

bob
mary
sue

Salary

50,000
55,000

90,000

View 2
Name

bob
mary
sue

View 3
Name Salary

bob
mary
sue

55,000
60,500

99,000

Figure C. 1. Modifying the Employee Database.

When an outer function completes execution, its results are paired with the range

variable(s) and placed in the database. For example, when function Raise completes

execution, its result is produced in the database and paired with the name Salary. See

figure C.l, view 3.

In order to impose constraints on a database, it is typically incumbent upon the

programmer to distribute appropriate guards into all functions which update a constrained

field. For example, suppose there is a cap placed on salaries in the Employee Database

above, limiting salaries to be no greater than $100,000. To impose this constraint, the

programmer in a typical language must place an appropriate guard on any statement

C2

updating the salary attribute. Furthermore, the programmer must be concerned about

indirect updates to the constrained attribute. For example, when a new employee's

information is added as a tuple to the Employee Database, the programmer must recall that

there is a constraint on Salary and furthermore, the programmer must recall that Salary is

an attribute of the Employee Database.

The problem with relying on the programmer to impose constraints is that the

programmer has to keep track of the constraints and know when it is appropriate to impose

them. When a constraint changes, a system maintainer must remember all of the functions

which are affected by the change and make the appropriate modifications.

One can envision BagL functions which initiate execution upon availability of

databases rather than upon domain variables. We are making simple alterations to the

syntax and semantics of BagL so that constraint functions will behave and be written in a

manner consistent to BagL computational functions:

Constraint(Dom(DB,DB'),Ran(DB))is

[[DB'J when <=(Salary', 100,000)

[DB] otherwise]

This function executes whenever the named Database and its successor (denoted by

a prime) is available. Whenever the named database is updated (i.e., when both DB and

DB' become available), the function, Constraint, returns the new database if the Salary

constraint is met. Otherwise, the old database is returned. There is no need for the

programmer to place guards throughout a program or set of programs which affect, either

directly or indirectly, the constrained attribute. The constraint is stated one time and is

imposed on any update, whether direct or indirect. If, at a later time, the constraint

changes, only one software update is necessary. By removing the responsibility for

imposing constraints from the programmer, BagL provides a foundation for the production

of more reliable software.

Dl

APPENDIX D VISUAL LANGUAGE
The representation of a problem solution in any language, regardless of the

abstraction level of the language, is complicated by two needs:

(1). the need to present nested operations and

(2). the need to select operands upon which the operations are to apply.

Nested program structures are a major source of confusion when attempting to read

or write a program. In procedural programs this source of complexity is made worse by

the fact that there are many different types of control structures that can be nested, including

procedures, functions, iterative statements, and if-then-else structures. Programmers must

understand the interaction between nested statements of differing constructs (e.g., loops

inside if-then-else, etc.) and then they must understand the interaction of the non-control

statements inside the nested structures.

BagL presents an improvement over the procedural languages in that only non-

control statements are nested in BagL (Control statements, other than guarded commands,

do not exist in BagL). Therefore, the programmer need only understand the interaction of

nested terms and relations in BagL — nothing else can be nested. However, BagL still

suffers from some of the confusion which results from nested structures. Consider the

irregular BagL function to compute the square of a matrix:

function square(dom(t), ran(sq)) is [+([*([t(i, (*)),t((*),j)])])]

This function is indeed daunting. It states that for each i and j associated with table t

multiply row i by the corresponding elements of column j. This operation results in a bag

of products to which the + sign is distributed, resulting in the singleton bag corresponding

to the i jth position of the range bag, sq.

With the square function, one observes the difficulty of representing nested

structures; we call this problem the containment problem. What is inside what? The

typical approach to dealing with this problem is to use a directed graph to represent the flow

of the equation. [B93] See figure D. 1.

t(i,*)
* +

t(*,j)

Figure D.I. Nested Structures.

D2

While an improvement over the textual definition, there may be better ways to

indicate the nesting of BagL terms. Using our method, the containment of an operation is

self-evident. Consider again the BagL function to square a matrix, but this time the

presentation will benefit from an improved visual approach:

Figure D.2. Containment.

As one can observe, the containment of an operator is self-evident when compared

to the textual function, above. BagL's abstraction actually facilitates the development of a

visual interface. The research into visual languages and interfaces is typically based upon

current paradigms of programming. The languages serving as a foundation for this work

have complicated computational models which tend to muddy the waters in the search for

interface improvement. As stated previously, BagL has the simplest possible

computational model. There are no unnecessary complications in the model.

Similarly, the BagL model suggests basic operations associated with the selection

of operands for computation. There seem to be basic selection operations which may also

have revealing visual definitions. The two fundamental ways to select data are (1). based

upon value and (2). based upon position. The darkened row and column of tables t in

figure D.2 suggest a scheme to depict the selection of operands based upon position. With

a better representation scheme, BagL should provide a view of problem solution that is

easy to read, write, and comprehend. With better comprehension should come increased

effectiveness.

El

APPENDIX E A PROOF SYSTEM FOR BAGL PROGRAMS
In this appendix we introduce the axiomatic definitions of BagL outer functions.

We will consider only outer functions with no cooperation, i.e., ~(3fl,f2)(fl * f2 &

Domain(fl) n Range(f2) # {}), where /i is a BagL function. We give all definitions

necessary to relate the example BagL function with a corresponding formal requirement.

The idea in the requirements phase is that one is stating his/her intentions with

respect to the affect a BagL function is to have on its universe. In the following, the

formula R&V&D is derived from a formal requirement and states the desired result of a

function. In the formula R&V&D, R is the condition desired, D is a formula defining the

two sets DOMAIN and RANGE, and V is a formula which states membership information

for the Universe, U.

Axl: wp("£", R) = RX
E & {x}=RANGE

where "R
X

E denotes a copy of the predicate defining R in which each occurrence of
the variable x is replaced by [the meaning of a BagL_Term], (E)" [D75].

Ax2: wp("£,• when Bt" ,R) = BB

where BB = (3i: 1 < i < n : Bj) &

(Vi: 1 < i < n : Bj => wp(Ei,R))

See [D75] for the theorems related to BB. In Ax3, assume Dom and Ran are the

sets of domain and range variables given in the BagL function /'s definition:

Ax3: wp("f(Dom,Ran)= [E[when 5/]" ,R&V&D) =

(wp(E; when 5/, R)) &

(Vx)(x e DOMAIN => wp(x,V)) &

(Dom=DOMATN & Ran=RANGE)

Our goal with Ax2 is to make BB=TRUE. In doing so, the hope is that the first and

third outer conjuncts of Ax3 will be true, leaving the second conjunct as the sole precondition

to the function's execution. The second conjunct of Ax3 effectively gives the semantic of the

function: that the elements of the DOMAIN are consumed in the universe, leading to the

production of the RANGE element.

E2

An Example.

Our goal in the proof is to show that a function of BagL satisfies the postcondition

R&V&D which is obtained from a SPEC [BL91] requirement:

CONCEPT max(x,y:integer) VALUE (rminteger)
WHERE (m=x OR m=y) & m>x & m>y

Becomes,

R&V&D, where
R=(m=x OR m=y) & m>x & m>y -from the WHERE clause
V= UD{ <m,_>} -from the VALUE clause 1
D= DOMAIN={x,y} &RANGE={m}
— from the arguments of CONCEPT max and the VALUE clause

We begin the derivation with Axl because in order to obtain a function we must first

obtain its set of guarded commands, and in order to obtain a set of guarded commands, we

must first obtain the individual commands — the only commands possible in BagL are the

BagL_Terms "E". Given R, we first let "E" be "x":

By Axl and through simplification:
wp("x",R) = ((m=x OR m=y) & m>x & m>y)mx & {m}={m}

= ((x=x OR x=y) & x>x & x>y) & TRUE
= x>y

By Ax2 (the second conjunct of BB) we can take the wp("x",R) as a guard:
(x when x>y)

However, the first conjunct of BB, namely (3i : 1 < i < n : B[), is not satisfied, i.e.,

BB^TRUE. To make BB=TRUE we repeat the sequence above for the other alternative
which will guarantee there will always be some Bj=TRUE:

By Axl and through simplification:
wp("y",R) = ((m=x OR m=y) & m>x & m>y)my & {m}={m}

= ((y=x OR y=y) & y>x & y>y) & TRUE
= y>x

By Ax2 (the second conjunct of BB) we take the wp("y",R) as a guard:
(y when y>x)

1 Assume that underscore (i.e.,"_") can match anything as an anonymous variable.

E3

Leading to the guarded set

(x when x>y else
y when y>x)

which satisfies Ax2 (i.e., BB=TRUE), leading to the application of Ax3:

wp("fl[x,y],[m])=(y when y>x else x when x>y)" ,R&V&D)
= TRUE & (Vx)(x e DOMAIN => wp(x,V)) &

(Dom=DOMATN & Ran=RANGE) [By Ax2]

= TRUE & (wp(x,V) & wp(y,V)) &

({x,y}={x,y} & {m}={m}) [By Substitution]

= (wp(x,U 2 {<m,_>}) & wp(y,U 2 {<m,_>})) & TRUE

[By Simplification]

= U 2 {<x,_>} & U 2 {<y,_>}
[By Axl and

simplification]

Now, the function, its precondition, and its postcondition (which was given) are known. One

can see, as a result of the foregoing, that the BagL function satisfies R&V&D which was

obtained from the SPEC requirement:

(U2{<x,_>) &U2{<y,_>})

f([x,y],[m])=(y when y>x else x when x>y)

((m=x OR m=y) & m>x & m>y) &
UD {<m,_>} &

(DOMATN={x,y} & RANGE={m})

Fl

APPENDIX F NONSCALAR CONSTRUCTS
From one perspective, the history of language design indicates that languages have

evolved from algorithmic-oriented languages to data structure-oriented languages. (See

Figure F.l.) Consider the move from FORTRAN to languages like ALGOL and Pascal.

In solving problems in FORTRAN, one focuses on the production of an algorithm. In a

language like Pascal, a problem solution is an algorithm that interacts appropriately with a

data structure. A good example of the Pascal view is a program to convert a prefix

arithmetic expression into an equivalent postfix expression. After constructing a binary tree

which holds the prefix expression in an appropriate configuration (that is, a configuration

where operators are parents of operands), one merely performs a postorder traversal of the

tree to obtain the postfix expression. The data structure designed thus, plays a central role

in the problem solution.

Object-oriented languages, which encapsulate data structures, take the notion of

problem solving further away from algorithms and closer to data structure design. The

intent is to view the product of software engineering to be a set of objects, rather than

programs.

BagL has been developed in order to explore the possibility of a language based

solely on high level constructs for describing data structures. In BagL , a problem solution

is a data structure which holds results useful in solving some problem. This view of a data

structure (henceforward called a nonscalar) is meant to include traditional data structures,

databases, screen displays, reports, etc. The nonscalars of BagL are bags.

Algorithm- Algorithm/ Object Declarative
Orientation DS-

Orientation
Orientation Data Structures

JO&CKAAl PASCA£ ADA
SJHA££<CA£K

gAMMA
AP£
QAgc

Figure F. 1. Evolution of Languages.

Bags in BagL are collections of elements wherein each element may occur more

than one time (as opposed to a mathematical set) and where each occurrence of an element

possesses an ordinal position. A bag may be singleton (e.g., [99]), or nonsingleton

F2

(e.g., [[1],[2],[3]] or [[[1],[2],[3]],[[10],[20],[30]]). Complex structures of bags

containing bags can be described. Like the list of LISP [L60], the bag of BagL can be

used to build any data structure.

When processing nonscalars, the central problem is the selection of elements to

which the processing is to be applied. Sometimes it is desirable to apply an operator to all

elements of a nonscalar. The regular form of processing (which is one of the nonscalar

processing constructs of BagL) is one where an operation is to be applied in a uniform

manner to all of the elements of the nonscalar. For example, when one computes the sum

of a set of elements, the addition operator is being applied to all elements of the set (i.e.,

the addition operator is acting as an aggregate operator in this case). In other cases, one

may wish to apply an operator to some of the elements of the nonscalar. The selection of

elements may be based upon value or position. BagL possesses a construct for this

irregular form of processing data.

In both the regular and irregular forms of processing nonscalars, one begins with a

nonscalar and (typically) reduces in the dimension of the nonscalar (in the case of regular

processing) or reduces in cardinality (in the case of irregular processing).1 There are

times, when it is necessary to expand a nonscalar, increasing the nonscalar in dimension

and/or cardinality. BagL possesses a construct termed the generative construct which is

used to expand nonscalars.

1 A reducing construct, given an input D will produce a result, R where R is no larger
(in dimension or cardinality) than D. E.G., Given a construct that reduces in cardinality:
D ->R, the following relation holds after D is mapped to R: \D\ > \R\

F3

DOMAIN

SELECTION

RANGE

Reduction Expansion

ALL ELEMENTS
PRESENT

ALL

Dimension Dimension

Cardinality Cardinality

SOME
Dimension Dimension

Cardinality Cardinality

SOME ELEMENTS
PRESENT ALL

Dimension Dimension

Cardinality Cardinality

SOME Dimension Dimension

Cardinality Cardinality

Figure F.2. A Summary of Nonscalar Constructs.

Sometimes, a nonscalar is being processed wherein all elements of the nonscalar are

not present all at once. In this case, the arrival of an element is an event to which an

operation must respond. BagL possesses an eventive construct. With (or without) the

eventive construct there are features to select all or some of the elements in the nonscalar

structure. See Figure F.2 for a summary of the constructs necessary to describe nonscalar

processing.

In nonscalar processing, a nonscalar in some domain (i.e., the DOMAIN column

in figure F.2) is selected to be the basis for a new nonscalar (i.e., the RANGE column in

figure F.2). The input (or domain) nonscalar may be totally or only partially present. The

eventive construct of BagL captures this latter notion. The first and third options in the

second (i.e., the SELECTION) column indicate that given a nonscalar X, where X is to

serve as the basis for a new nonscalar Y, all values of X are used to form Y. The

regular construct satisfies this notion.

Alternatively, only selected values of X may serve to form Y (the second and

fourth options in SELECTION). The irregular construct provides this facility of

nonscalar processing. Finally, the result Y (or RANGE), when compared to its basis X,

may be reduced in dimension or cardinality. The regular and irregular constructs

reduce in dimension and cardinality, respectively. Alternatively, Y may be expanded in

dimension or cardinality. The generative construct provides for the expansion of

F4

nonscalars. The regular, irregular, generative, and eventive constructs of BagL

may be viewed as nonscalar primitives.

There are other declarative languages meant to process nonscalars. They typically

excel in one form of nonscalar processing, but fall short in others. For example, one of the

earliest languages for nonscalar processing, APL, excelled in the regular processing of

nonscalars but often fell short in the other forms of nonscalar processing, most notably in

the irregular processing of nonscalars.

< '

REFERENCES
[AG94] Aida Gutierrez Gandara, "A Visual Interface for a Formal Speicifcation

Language," Master's Thesis, University of Texas at El Paso, December, 1994.
[BL91] Berzins and Luqi, Software Engineering with Abstraction, Addison-Wesley, New

York, 1991.
[B93] Alfs Berztiss, "The Query Language Vizla," IEEE Transactions on Knowledge and

Data Engineering, Vol. 5, No. 5, (October, 1993), pp. 813-825.
[C94] "Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air

Force Office of Scientific Research, #F49620-93-l-0152, February, 1994.
[D75] E. Djikstra, "Guarded Commands, Nondeterminancy and the Formal Derivation of

Programs," Communications of the ACM, Vol. 18 No. 8, August, 1975, pp.453-
457.

[D89] A. Deshpande and K. Kavi, "A Model for the Specification of Concurrent
Processes," Microcomputer Applications, Vol. 8, No.3, March, 1989, pp. 95-
102.

[G85] D.Gelernter, "Generative Communications in Linda", ACM Transactions on
Programming Languages and Systems, 7(1), pp. 80-112 (1985).

[G94] Ann Quiroz Gates, "Context Monitoring with Integrity Constraints," Ph.D. Thesis,
New Mexico State University, 1994.

[LC95] Luqi and Daniel E. Cooke, "Rapid Prototyping and a Model for Software
Maintenance," to appear in International Journal on Software Engineering and
Knowledge Engineering.

